小编:自古以来数学一直是教育行业所注重一门专业,古往今来也有很多出色的任务所诞生,而今天上地数学辅导中心要为大家分享一个数学天才——沈括的传奇!下面是详细的讲解。
自古以来数学一直是教育行业所注重一门专业,古往今来也有很多出色的任务所诞生,而今天上地数学辅导中心要为大家分享一个数学天才——沈括的传奇!下面是详细的讲解。
中国古今数学家——沈括 沈括在我国北宋时代,有一位非常博学多才、成就显著的科学家,他就是沈括──我国历史上最卓越的科学家之一。他精通天文、数学、物理学、化学、生物学、地理学、农学和医学;他还是卓越的工程师、出色的军事家、外交家和政治家;同时,他博学善文,对方志律历、音乐、医药、卜算等无所不精。他晚年所著的《梦溪笔谈》详细记载了劳动人民在科学技术方面的卓越贡献和他自己的研究成果,反映了我国古代特别是北宋时期自然科学达到的辉煌成就。《梦溪笔谈》不仅是我国古代的学术宝库,而且在世界文化史上也有重要的地位。《梦溪笔谈》是中国科学史上的坐标,是沈括一生社会和科学活动的总结,内容极为丰富,包括天文、历法、数学、物理、化学、生物、地理、地质、医学、文学、史学、考古、音乐、艺术等共600余条。其中200来条属于科学技术方面,记载了他的许多发明、发现和真知灼见。
沈括在数学方面也有精湛的研究。他从实际计算需要出发,创立了“隙积术”和“会圆术”。沈括通过对酒店里堆起来的酒坛和垒起来的棋子等有空隙的堆体积的研究,提出了求它们的总数的正确方法,这就是“隙积术”,也就是二阶等差级数的求和方法。沈括的研究,发展了自《九章算术》以来的等差级数问题,在我国古代数学史上开辟了高阶等差级数研究的方向。此外,沈括还从计算田亩出发,考察了圆弓形中弧、弦和矢之间的关系,提出了我国数学史上第一个由弦和矢的长度求弧长的比较简单实用的近似公式,这就是“会圆术”。这一方法的创立,不仅促进了平面几何学的发展,而且在天文计算中也起了重要的作用,并为我国球面三角学的发展作出了重要贡献。
当前网址:http://www.hbxwzx.com/shehui/2020-05-07/179368.html
免责声明:本文仅代表作者个人观点,与北方资讯网无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。